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Null fermio-dynamics in superspace: Abelian and non-Abelian 
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Abstract. Half-order actions, i.e. actions where each term contains, at most, one spinorial 
derivative, of all the different known 3~ supersymmetric massive vector systems are given. 
Since the two real Grassmann coordinates (e', 02) SE 6 of the 3 D  superspace respectively 
constitute the two independent (fermionic) light-front projections of 0 along the null 
bosonic directions x* = 2-"* ( x o i  XI), one of them, 0' is regarded as the spinorial time 
while the other one, 02, is seen as a (spinorial) spacelike variable. In terms of the 
corresponding null spinorial timelike and spinorial spacelike derivatives the field equations 
contain algebraic as well as differential constraints. 

We solve them for the different known 3 D  vector systems and obtain their corresponding 
unconstrained actions in superspace. In each case their evolution is shown to be controlled 
by a quantity which, by analogy with the standard bosonic case, is called the superenergy 
of the system. 

The analysis of the scalar case illustrates the connection between null dynamics in 
superspace and the standard null dynamics in 3 D  bosonic spacetime. It also shows how 
much the superenergy contributes to the null bosonic generator of the 3~ dynamics. 

1. Introduction 

Light-front dynamics constitute an intrinsically relativistic method of understanding 
the classical and quantum properties of physical systems. This approach provides a 
complementary picture of both the standard canonical way, where a timelike direction 
has to be externally picked out, and of the covariant presentation which does not show 
in a transparent way the dynamical structure of the system (Dirac 1949). 

From the point of view of quantum field theory, quantisation along light-front 
coordinates is inequivalent to the canonical timelike method (Leutwyler et al 1970, 
Rohrlich and Streit 1972, Schlieder and Seiler 1972). 

Light-front methods have been widely applied in the past to quantum electro- 
dynamics (Kogut and Soper 1970), 4~ Yang-Mills theory (Tomboulis 1973, Casher 
1976) and classical (Aragone and Chela-Flores 1975, Scherk and Schwarz 1975, Aragone 
and Restuccia 1976) and quantum gravity (Kaku 1975, Kaku and Senjanovic 1977, 
Aragone 1978). 

Recently they have successfully been used in proving the finiteness of the N = 4 
supersymmetric Yang-Mills theories (Mandelstam 1983, Namazie et a1 1983) in under- 
standing their auxiliary field structure (Hassoun et a1 1983) as well as in analysing 
spin-3 (and higher) fields (Bengtsson et a1 1983). 
$ Partially supported by CONICIT Grant SI-972. 
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Here we take the point of view that the spinorial derivatives are the fundamental 
elements which determine the evolution of a supersymmetric system. They are the 
square root of the light-front bosonic derivatives. Since we regard x+ = 2-"2(x0- x') 
as the 'time', D1, being the square root of a/ax+, becomes the fundamental dynamical 
operator while D2, the square root of a/ax-, is seen as a (fermionic) spacelike operation. 

In this paper we study the spinorial dynamical structure of the four presently known 
supersymmetric massive vector systems: the ordinary massive vector, the Abelian 
topological massive, the self-dual and finally the topological massive Yang-Mills 
system. 

In each case we start from the corresponding half-order action in superspace, where 
each term contains, at most, one spinorial derivative. Then we single out algebraic 
and differential constraints and solve them. Finally we give the explicit form of the 
unconstrained action. As a consequence we obtain the generator of the light-front 
spinorial dynamics, the superenergy of the system. 

The next section contains a quick review of 3~ superspace and of the relevant null 
properties. In § 3 we consider as an example the massive scalar multiplet and the 
ordinary massive vector case. The scalar multiplet allows us to exhibit the connection 
between null fermionic superspace dynamics and the standard 3~ bosonic light-front 
dynamics. Then, in § 4 we study two less traditional models: the Abelian topological 
massive vector and its close associate, the self-dual massive vector. Section 5 is 
dedicated to the non-Abelian topological vector system. Finally, in the last section we 
make some comments and discuss the results obtained. 

2. Review of 3~ superspace 

In D = 3 there exist Majorana spinors 8 = (8" ; a = 1,2) and real y matrices ym forming 
aCliffordalgebra{y", f"'=2r]"', - T O O =  r ] j i  = +1 (i.e. yo= iu2, 7' = ul, y2 = u3). They 
also represent the relativistic O(2, 1) Lie algebra [2-'ym; 2-'yn] = ~ " ' " ~ ( 2 - ' y ~ ) ;  E'" = 
+1. Superfields can be expanded in its components with respect to the natural basis 
of the Grassmann algebra { 1 ; 8" ; O2 = &I = &eP = EP,8"BP ; = - E ' ~ =  +l}. Addi- 
tional details can be found in Aragone (1983). 

Both spinor charges and spinorial derivatives obey the anticommutation relations: 

iq" = a l a &  - i( y'e)" ar, D" = a/a#" + i( y'e)" ar, pr = -i ar. (1b) 
Introducing the additional momentum-like variable p4 = 2-'DD the algebra C3 

generated by the spinorial derivatives has been shown to be equivalent to the infinite 
set { pmnc; pmP4p4pmy2( D")'} because of the identities D"p, = -p4D" = puPD" = p,y'",Dp 
and p$ = pf (Aragone 1983). The product of two D can be written 

D"Dy = p u Y + p 4 ~ a y .  (IC) 

x* = 2-"2(XOT x') .  (2) 

In 3~ we choose the light-front coordinates 

Using the representation given above for the y matrices we have, from the right-hand 
side of (1): 

(3a) 
(36) 

DID 1 -  - -2-'/'ia, = 2-'/'p+ D2D2 = -2-'/2ia- = 2-'/2p- 
D1 D2+ D2D, = -2id2 = 2P2. 
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They make evident the square root connection between the fermionic operators 
( D l ;  D2) and the light-front evolution operators (a+,&). O 1  is the fermionic time 
associated with x+ while O 2  is the fermionic spacelike coordinate due to x-. 

Let us consider as an example a (real) massive scalar superfield 4(x,  e )  = 
a (x)  + i J,+" (x)  + i e2f(  x). 

Its components can be obtained by successive spinorial derivatives taken at vanish- 
ing 0 (Gates et al 1983): 

4/e=o a (x )  D 3 =  i+"(x) p441 = -2if(x). ( 4 a )  

The 3~ component action can be obtained from its superspace form by reducing 
the integration in the 8 form to spinorial derivatives at vanishing 8: 

( H K ) =  d20d3xH(x,B)K(x,  e ) = -  {2p4{H(x,0)K(x,0)}}d3x. (4b)  

I = 2-'"(4p44 +im4'). ( 5 a )  

I I 
For instance, the action for the scalar massive multiplet (in superspace (x, e ) )  is 

Its component form will be 

The vector supermultiplet is carried by a Majorana superspinor q U ( x ,  8 )  

W(X, e ) =  ~ " ( x ) + ~ P { ~ u & P a + ~ r y P U } + i 8 2 ~ a ( x )  ( 6 a )  
whose components can be obtained in a way similar to (4a): 

qff 1 = +"(x) DP\Ir,l = -$v6! + u'y;, p 4 W  = -2i4"(x). (6b)  
These components fields, regarded as spinorial derivatives at vanishing 8, will be 

very useful when evaluating the respective 3~ action using ( 4 6 )  and the properties 
mentioned earlier (1 c). 

We can now understand why each half-order action gives rise, when &integrated, 
to the corresponding first-order one in the 3~ effective world. By definition 

I" '= 1 d28 d3x HuADuKA. ( 7 a )  5 
Application of (4b)  tells us that 

d 2 6  d3x HUAD,KA = - 2p4(HuAD,KA)((d3x) 

2p4HUA(, D,K,l, HeA/ and DpHaA( are component fields of HaA or KA, according 
to definitions similar to (6b) .  Moreover p4D,K I = pUPDPK 1 = -id,'( DpKA)I brings in 
one derivative and D ~ D , K ~ ~  = ( ~ ' , , K ~ ) I  - ( P ~ ~ ! K ~ ) /  = -idUP(KA)I - intro- 
duces another derivative in the last term of (7b) .  Therefore the component action (7b)  
is just of the first-order type, the terms with one derivative being HuAl . (-id!(DPKA)l 
and (-iDPHUA)I a,'(K,)\. 
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3. The standard scalar and vector massive supermultiplets 

The half-order action of the massive scalar supermultiplet is given by 

I = $ ( p , ~ " 4  - 2-'ip,p" + m4') ( 8 0 )  

where ( . , . ) stands for integration with respect to d5z = (d3x)(d26). 
Independent variations with respect to p" and 4 yield 

ip" = D"4 -iD,p" + m4 = 0. ( 9 4  6 )  
After insertion of p" into (56) one obtains the right first-order supersymmetric equation 
stating the massive propagation of 4 :  (ip4+ m)+ = 0. 

Expanding this action in terms of ( p a ,  4 )  we have 

I = i ( p 2 (  - - ~ ~ 4  + ip') - p l (  D, 4 )  + m 4 2 )  (86) 
where we see that p 2  is the multiplier associated with the algebraic constraint C2= 
ip' - D24 = 0 (no D, or a+ derivatives in it). After solving it we get the unconstrained 
null spinorial formulation of this action: 

I = 2- '(D24 iD14 + m 4 2 )  = 2-'(4 ip44 + 4m4) .  (8c) 
We observe the similar structure of this action compared with the standard form of 
bosonic actions in the light-front coordinates which has the form (qq' - J (  q, 9 ' ) ) .  Here 
D 2 -  and the role of the null energy, which is a non-conserved 
non-negative quantity, has been taken by ( m 4 2 ) .  

On the field equations the superenergy ( m d 2 ) -  (4f2-2-'mi+') which is a real 
quantity of the same dimensions as the energy, having no definite sign. 

Integration of ( 8 a )  with respect to the 6 variables yields the first-order form of the 
3~ component action, using the expansion (76). 

The real Majorana superspinor p m  has the form: 

and D, - 

p"(x, e ) = p " ( x ) + B p { ~ ~ P r p ( x ) + q r y ~ " } + i e 2 ~ a .  (10) 
Its components can be recovered through spinorial derivatives at vanishing 6, as shown 
in (66). After insertion of the different component fields into the right-hand side of 
(76) one finds (up to an overall i) 

I = ( q :  + 2q,a,u - $ p 2  + 4maf- 2pf- ipd+ - 2iiip + 2ii+ - imJ+). (1 1 ) 

The 6 integration can also be done after one has reached the unconstrained null 
spinorial formulation (8c), using ( IC) ,  ( 3 a ) ,  and taking into account that the null y 
matrices y* = 2-"2 ( y l )  have the respective values: 

(12a) 

We get (up to an overall ti, af/ax+ = j  af/ax- =f) 
I = ( ta 'a  + 4mfa + 4f2 - ( 8 , ~ ) ~  - i J a  + - i mJ+) 

- ( L  - 2a  1 a+4mfa - 4 f Z - ( d , ~ ) ~ + ~ i + ' C 1 ~ + ~ i + ' + ~ '  

+ 2i+'a2+' - 2im1+!~~+'). (126) 
The generator of the null dynamics contains two types of contributions: the first 

is the 6 integration of the superenergy and the second is of terms - D1D24/ * D2D141 
stemming from the (76) expansion of the null spinorial dynamical term 
I iD24 9 D14(d3x)  d26 of (8c).  
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The basic superfield needed to represent a vector system is a Majorana superspinor 
(x, e )  = V ( x ,  e)' as defined in (6a).  
The half-order action of the supersymmetric ordinary 3~ massive vector system is 

I,, = f(ipapDppa - iqQpDpqm -pclpqpa + p a p a  - m 2 q a Y " )  ( 1 3 a )  

where the independent variables are { p a p  ; 4"' ; pa  ; qp}. In terms of the superstrength 
W" = iDpD"Yp (13a) becomes 

z,, = 2-"'($ W, W" - m2YaYa) (13b) 

which can be integrated out in its 8 variables in order to obtain the familiar 3~ 
component form. It turns out to be 

I,, = (4ff(u,) - m'uS+tm2u2 - i($+ 2-'@)8(4 + 2 - ' ~ + )  + 2im2$4) ( 1 3 c )  

where we are using the dual field strength fr( U,) = E : ' ~ , u , .  

us to eliminate their corresponding multipliers ( p I 2 ,  p 2 2 ,  q22) .  Its reduced form is 
After expanding the action (13a) three algebraic constraints can be solved, allowing 

In this action it is convenient to introduce two new variables ( p ,  q )  to replace p2' 
and q2' :  

p 2 ' = i p - i D 2 Y I  q2 '=  q + i D 2 p l .  (15) 

Two differential constraints appear, associated with 9' and p1 as multipliers. The 
new form of the action reads 

It is possible to solve the two differential constraints: 

2P2'€'2 + 2p2 = D2p 

- 2m2Y2 + 2P2p2 = iD2q 

in terms of the new variables p ,  q. Calling A,,, = P i +  m2 = 
non-negative Laplace operator one gets for (q2, p 2 )  

m2  the massive 

Y 2  = -fiA;'D,( q + iP2p) 

p 2  = $Ak1D2(P2q - im2p). 

After their insertion in (8b) the unconstrained form of the action is found: 

~ s t , u n c = t ( - ~ ~  (m2/Am)D,p - D2q * (l/Am)Dlq +ip  * (2m2/Am)q). (18a) 
Observe that it essentially has the typical null canonical structure. Redefining ( p ,  q )  

p+mA;"2p q 3 A k " 2 q  

the unconstrained action becomes 

Ialg,unc = 4-WP ' iP4P + q i P 4  + 2 P W .  (18b) 
This action depends on two independent supersymmetric pseudo-scalar real vari- 

ables, as it must, the reason being that this system is a massive parity-invariant vector. 
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In D = 3 it has to contain the two s = + 1 and s = -1 pseudo-scalars plus their respective 
supersymmetric partners (Deser et a1 1982). The dynamics takes a very simple form: 

i p 4 p + m q = 0  ip,q + mp = 0. (190) 

In terms of ( w,, w2) given by p * q = 2-' w , , ~  this action takes the final uncoupled 
form: 

z,,,,,, = Qi(w, . ip,w, + w2 * ip4w2+ mw: - mw:). (18C) 

(ip,*m)w,,,=O. (196) 

Both w, and w2 obey the scalar massive propagation equation: 

In terms of the component fields of w, and w2, wi = a, +ig$, +i02f,, i = (1,2),  the 
superenergy takes the real value 

(mw:- mw:)-(4f:-2-'mi9:-4f:+2-'mi9:). 

It is also worth noticing that, when the mass goes to zero, the unconstrained action 
(12c) goes to the addition of two decoupled massless scalars, since massless 3~ 

excitations do  not have helicity (Binegar 1982). 

4. The Abelian topological massive vector system and the self-dual model 

A convenient form of the gauge invariant (under the Abelian gauge transformation 
c W a  = i-' D e l )  half-order action for the Abelian topological massive supersymmetric 
vector system is 

(20) ZEp = $(i-'qGPDpW, -+papDP W" - a  W, W" -pupqpa +fimpuppP") 

which, when m+0,  goes over the Abelian massless case ((13a) for m =0)  with 

Independent variations of the four layers of independent covariant superfields yield 
p' = 2-'i w". 

Expanding the action (14) in terms of the different spinorial components 
(p", p12, pZ1, pZ2, W ' ,  W 2 ,  . . . , ) three algebraic constraints can be recognised: 

- fD2 W2. (22) p" = -iD2P2 p" = i D2qI  q" = imp'' 

Their respective multipliers are p22, qZ2  and q". 
After introducing these values of PI', p" and q" into the initial action, it can be 

seen that, in the reduced action, (PI, W,) constitute an additional set of Lagrange 
multipliers associated with two differential constraints: 

iP2q2 - 4 W2 = ti D2 p (23a) 

- 2 m P 2 q 2 + P 2  W2 = D2q. (236) 
(Two new variables ip = p2' + i D 2 q l ;  q = q2' + 2-'D2 W, - m D 2 9 ,  have been defined.) 

(24a) 

(24b) 

Their solution can be expressed in the form (AO=Amlm=O=P:) 
qr2 = -- :iD2AO'Am1P2(P2-im)(q +iP2p)  

W2 = D2A ( Pz - i m ) ( q + mp ) . 



Null fermio-dynamics in superspace 61 

Insertion of these values of q2, W, and use of the identity D, D, P2 +p4 into the 
reduced form of the action (14) leads to the unconstrained action: 

I'OP m,unc = ai( pm ' . ( l /Am)(i~4+ m ) ~  + 4 .  ( 1/Am)(ip4+ m ) q  + 2 ~ .  m(l/Am)(iP4+ m ) q )  

= ai( w . (ip, + m ) w )  (25) 
where we have been able to cast I%,$c as the functional of a unique variable w =  
A i " 2 ( q  + mp). This is what one must expect on physical grounds, since the topological 
model is a parity-sensitive theory carrying either s p i n + l  (or -1) plus the necessary 
supersymmetric fermionic partner, according to the sign behind the mass in the last 
term of the action (14). The final expression of (25) shows that the Abelian topological 
model is just the wl part of the ordinary massive theory, as explicitly exhibited in 
(18c). It is also worth pointing out that the final physical variable w =  
2-'D,A;''2 W2+2-'"A&''' W, is a gauge independent quantity. 

The self-dual bosonic model (Townsend er a1 1984, Deser and Jackiw 1984) can 
be supersymmetrised and formulated in superspace. It is sufficient to notice that the 
propagation equation of the set (21) can be written in the form: 

DpDa{ Wp - 2 m q p }  = 0. (26) 

Wp - 2 m q p  = i-'Dp6 6 = 6'. (27) 

Locally this is equivalent to asserting that Wp - 2 m P P  is a pure gauge, i.e. 

Therefore, if one chooses a Lorentz supergauge, this equation can be reduced to 
Wp - 2 m q p  = 0 where, of course, T p  must now be transverse Dpqp = 0 because of 
the Bianchi identity on Wp. The half-order self-dual action generating these field 
equations has the superspace form: 

(28a) 

(28b) 
which, after 6 integration, becomes the supersymmetric version of the self-dual model: 

(28c) 

 self-dual - - im(paPDpq ,  -pupppu + i i q u m q a ) .  
m 

In terms of the superstrength W" introduced before (136) it can be written as 
Iself-dual - - m ( f q p W P  - i m q u q a )  

[self-dual - - 2 m ( - u , ~ ( u , )  - :mu; + imu2+i (&+tZJ ) (d  + id+)  - 2im&+). 

Independent variations of qQ, pap in ( 2 8 a )  lead to 

Pap Dppap + i m Y  = 0. (29) 
The 1 + 1 null expansion of (22) according to the independent spinorial components 

(PI ' ,  p", pZ1, pZ2, V I ,  'If,) explicitly shows the presence of two algebraic constraints: 

p" = 1D2q2 p"= -fD2'Pl (30) 
the former associated to pZ2 at its multiplier, the latter (quadratic) arising from the 
terms containing p". After we substitute these values of p" and p" into the expanded 
action we get a reduced form of (22), depending upon the three (super)variables 
( P 2 ' ,  TQ)' 
Iself-dual - 

m,red -im(4(D2*2) ' ( ~ l ~ 1 ) - f ( D 2 ~ I ) ( ~ 2 ~ 1 ) + ( ~ 2 ' ) 2  

+pZ1 . D I q 2 + i m q l q 2 ) .  (31) 
The first term can be transformed (taking into account (3b)) into 

t(Dz'4'2 * Dl'PI) zz (;'€'2 . D2DI'Pl) = -(;'P2DI DZ'P,) 

+('€'I . P ~ ' @ J ~ - ~ ( D l Y 2 .  D2'P,)+('Pl *P2'P2). 
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The new form of the action (31 )  suggests shifting from p2' to the new variable 
p*' - 2- ' /*D29 , .  
In this way an additional differential constraint appears having as its associated 

multiplier: 

(32a) pe l f -dua l  = i m W 1 .  { ( P ~ + ~ ~ ) Y ~ + D ~ P } + P *  D1q2+p2) .  

The solution of this last constraint is 

V*= -A,'(P2-im)D2p. (32b) 

Once (326) is introduced into Izli;ddua', we have the unconstrained action of this 
supersymmetric self-dual model in terms of the unique dynamical variable p one is 
left with (corresponding to the fact that this parity-sensitive model must only contain 
the supersymmetric extension of the unique physical component of the bosonic self-dual 
model carrying either spin+ 1 or - 1 ) .  The unconstrained self-dual action is 

(33) Iself-dual = 
m,unc (P. ("/A*)(iP,+m)p)=(w* (ip4+m)w) 

once the redefinition w = mAh,'I2 . p has been introduced. The self-dual and topological 
models are equivalent, as is shown by the respective last terms of (25) and (33) .  

5. The super-non-Abelian topological massive vector system 

The basic superpotential is given by q" = g?""T, where T: = T, are the Hermitian 
generators of the internal semisimple group, [To, Tb] = icobcT0 qm" are Majorana 
superspinors and the 3~ coupling constant g - MI'*. 

The initial formulation of this system was given by Schonfeld (1981). Thereafter, 
alternative improved superspace derivations were independently given by Aragone 
(1983) and Gates et a1 (1983). The infinitesimal inhomogeneous transformation law 
of Y m  is 

6,V" = -i9?"w D"w -('Pa, w ) .  (34) 

(Round brackets are assumed to be either commutators or anticommutators, according 
to whether one of the quantities involved is a boson or whether both are fermions.) 

It is also useful to introduce the operator 9'"( * )  = D e ( .  ) -2- ' (W,  * ). It allows a 
compact expression both of the gauge covariant superfield strength 

W" = i 9 & 9 ' " q P  +&i(Pp(q" ,  V)) (35a) 

and of the distorted superfield strength 

W" = W" +$('UP, 9'Pvm). 

The half-order action of this non-Abelian system is given by 
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which is a generalisation, for the non-Abelian case, of (20). (Independent variations 
of qpa, ppa, W" yield 

pup = -i9L'Pp wa = - a h p u p  + h i ( q p ( V a ,  V)) (37a, b )  
g a p  = --;atQ W P  +impup +dm('Pa, q') (37cj  

which inserted into (32) lead to the second-order action 4-'g-2(2-1 W2 -- m T  * W ) . )  
We first look for the algebraic constraints in the 1 + 1 expansion of the half-order 

action (36). Calculations become simpler in the supersymmetric algebraic gauge 'P, = 0 
that we choose from now on. 

In the first step three linear constraints are singled out, their solutions being 

q" = -49; w, pi '  = 0 pI2 = igi'P,. (38)  

They appear associated respectively with ( p2,; 9''; qI2) as Lagrange multipliers. 
After we introduce these solutions (38) in the initial action (36) we obtain the reduced 
expression: 

+ p 2 ' .  q2 ' -$WI.  ( W2+iD,D,91)-$mp21 * p Z 1 )  

p2' = 0 W, + i D, D2Y1 = W, + 2-Ii2V '1 = 0. 

(39)  

and two new algebraic constraints emerge: 

(4% b )  

Substitution of these values of (p", W,) into the previously given reduced form 
provides the unconstrained action as a functional of the unique fermionic supercom- 
ponent ql: 

1 
(41a) I 'OP r e d , u n c = m ( t q i  ' (iP4+m)*l+ii(q:, D2q17 TI))* 

2 g  

The corresponding field equation has the form: 

(ip4 + m)V { + i( D2Y {, 'PI) + fi( D2V1, 9 i )  = 0 (41b) 

which is also meaningful when the mass goes to zero. Even in the massless case, the 
3~ super Yang-Mills determines a non-trivially self-coupled theory, as the uncon- 
strained action demonstrates. 

Observe that the reduced action owes its dynamical non-triviality to the presence 
of a cubic self-interacting term. 

This cubic term is the one which prevents writing the unconstrained action in terms 
of a supervariable like D2Vl - w. The superenergy is given in this case by 

(+'Pi . m Y , + i i ( q { ,  D2Vl,  ql)). (42) 

It is also worth pointing out that, since the gauge choice q2 = 0 is an algebraic one, 
and since we have reached the unconstrained action just by solving algebraic constraints, 
then when computing the effective action in this sypersymmetric null gauge there will 
not be ghosts in it, not to say that the vertex structure stemming from the unique cubic 
term -(T;, D 2 q , ,  'PI) is very simple. 
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6. Discussion 

We have shown that if one takes the evolution along the Grassmann coordinates as 
the basic evolution operators generating the whole dynamics of a (vector) supersym- 
metric system they naturally induce a supersymmetric bosonic time ( -ia4 - p4) along 
which the system evolves in a first-order way. The unconstrained actions for the free 
massive vector system, as well as for the Abelian topological massive and self-dual 
model (which are equivalent for non-vanishing mass), have been found in terms of 
the expected number of supercomponents: 2 in the first case due to its parity invariant 
structure, and 1 for the latter ones which, being parity sensitive, contains one definite 
value of the spin of the propagating vector (either +1 or -1). 

In addition to these free systems we have also analysed both the massless and the 
topological massive vectorial non-Abelian supersymmetric systems. A convenient 
algebraic gauge T2 = 0 was found which permits the rapid identification of all the 
constraints these systems have. Since they are all algebraic, one may solve them and 
obtain the very simple form given in ( 3 7 a )  where it can be seen that interactions are 
due to the existence of a cubic contribution to the superspace action. 

In this intrinsically supersymmetric picture there is a quantity which generates the 
dynamics. This quantity is what we have defined as the superenergy of the system. 
For all the vector systems we have treated their corresponding supersymmetric covariant 
half-order action was given. These results demonstrate that the basic propagator of 
the unique fermionic supervariable T, is essentially (ip4+ m)-' = 
(-pz+ m2)-' . (ip4- m )  and that the effective action is ghost free. 

In four dimensions the Grassmann algebra becomes complex (Aragone 1985) and 
consequently there are two spinorial time derivatives (Dl, D i )  one has to consider as 
the fundamental evolution operators. This is a technical problem that makes calcula- 
tions lengthier but does not prevent us from performing a similar analysis leading to 
the unconstrained formulation of supersymmetric systems. 
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